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Abstract-The continuous-properties model has been’ developed to numerically solve problems of melting 
and solidification of substances with a mushy region. The new method is applicable to negligibly small 
mushy regions. Therefore, it can also be used to numerically calculate the behaviour of materials showing 
a discontinuous (first-order) phase transition. A stress number, comparable to the Reynolds number of 

fluid flow, can be introduced to quantify the difficulty of the computational task. 

. INTRODUCTION 

Melting and solidification occur in many environ- 
mental and technical processes. A unique math- 
ematical formulation for the macroscopic phenom- 
enon is called the Stefan problem, after J. Stefan, who 
was preoccupied with the solidification of water in the 
polar sea at the end of the last century [l]. Neumann 
[2] found an analytical solution of the problem in 
the case of an isothermal semi-infinite domain and a 
discontinuous temperature change at its boundary. 
Enormous efforts have been made to solve the Stefan 
problem by approximate analytical solutions. Several 
methods, like coordinate transformation, scaling tech- 
niques, reduction to integral equations, etc., have been 
applied [3]. In many practical cases, e.g. in solar engin- 
eering, the boundary conditions are stochastic or 
chaotic, and, therefore, during the last decade an 
increasing number of applications of numerical 
methods have been performed. Good results have usu- 
ally been obtained when an enthalpy formulation was 
applied (e.g. see refs. [4, 51). 

2. THE BASIC IDEA OF THE MODEL 

Several mixtures and glassy substances show a con- 
tinuous enthalpy transition as a function of tem- 
perature from a pure solid to a p&-e liquid phase. Our 
idea was to develop a model to calculate the behaviour 
of only such substances. Taking existing theoretical 
treatments into consideration, the enthalpy model 
and the overall specific heat method [6] prove to be 
very appropriate calculation schemes. The newly 
developed method is a combination and an extension 
of these two methods. As we will see in the Section 3, 
it can also be used to numerically solve the melting 
and solidification problem of substances without a 
mushy region. It leads to a nonlinear diffusion equa- 
tion with a temperature-dependent diffusivity. There- 

fore, our problem has analogies in moisture transport, 
in the continuum limit of diffusion-governed chemical 
reaction kinetics, and in fluid dynamics, and, in 
general, is described by the shock theory. Different 
from solutions of Burger’s equation-where increas- 
ing steepness is driven by a gradient-in our case front 
creation occurs with a dependence on curvature. 

At present the model does not refer to supercooling 
and natural convection in the liquid phase. As a fur- 
ther simplifying assumption we do not take radiation 
energy transport in the bulk of the phase change 
material (PCM) into consideration, because many 
substances are nearly opaque for black-body radiation 
in the temperature range of their application. The 
model can be applied to any (also stochastic or 
chaotic) initial values and boundary conditions. If 
alternate heating and cooling occurs, it allows several 
solid and liquid domains to build up. 

Every generalization of the Stefan problem to a 
storage application will be called a Stefan model (e.g. 
a two-dimensional approach to a store with a heat 
transfer fluid). Table 1 shows differences between the 
Stefan model and the continuous-properties model. 
As will be shown in Section 5, a larger melting regime 
corresponds to a weaker nonlinearity of the problem. 
Therefore, solving the Stefan problem for materials 
with mushy regions is quite inappropriate. However, 
the continuous-properties model can be applied to 
nearly every substance, because in a certain sense it is 
a generalization of the Stefan model [7]. 

3. MATHEMATICAL MODELING 

As already mentioned, the aim was to construct 
a model where the continuous transitions of all the 
physical properties between the two phases, solid and 
liquid (as a function of temperature), are taken advan- 
tage of. If energy conservation is formulated-includ- 
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NOMENCLATURE 

53 specific heat V velocity 
h specific enthalpy X space co-ordinate. 
k thermal conductivity 
s location of the boundary Greek symbols 
Sn new defined stress number for the 

; 
thermal diffusivity 

thermal system parameter, calculated from equation 
Ste Stefan number (35) 
t time P density 

:, 

temperature r width of the melting regime 
mean value of a temperature (temperature difference). 
oscillation (temperature 
level) Indices 

TF final temperature 1 solid phase 
T inital temperature 2 liquid phase 
T, (mean) melting temperature * modified values (see definition in text). 

ing the Fourier law for the heat flux density-we 
obtain 

/I*$+; -kg =O. ( > 
The heat conductivity k is also a temperature-depen- 
dent property. In Section 4 we will give more infor- 
mation on these properties and their nonlinearities. 
After performing an inner derivative and applying the 
product law of differential calculus, the result is 

p. $. !+~_i!!t.!%o 
ax ax . (2) 

For the whole temperature range the overall specific 
heat is defined as a derivative of the specific enthalpy : 

dh 

s 

1 
cP=p h= 

dT 
c,,(T) d7”. (3) 

0 

The thermal diffusivity is 

’ k(T) cc(T) = -*- 
P c,(T) 

where we have assumed a constant density p. With 
equations (3) and (4) we obtain 

and 

dT 
- = a(T)*$ +b(T)- 

2 

at (6) 

respectively, with the temperature-dependent coeffi- 
cients 

a(T) = a(T) b(T) = a(T)- ;a$_ (7) 

In chemistry, in the case of constant coefficients a and 

Table. 1. Comparison of some features of the Stefan model with those of the continuous-properties model 

Effect Stefan model 
Continuous-properties 

model 

Change of physical properties 
Interface 

Temperature profile 

Basic equations 

Analytical solutions 
Degree of nonlinearity 
Calculation of the behavior of 

the following materials is 
possible : 

Discontinuous 
Width is zero 

Discontinuous derivative at the interface 
location 

Is a smooth function 

Heat conduction equation for each phase 
and interface (boundary) condition 

Only one nonlinear heat conduction 
equation with coefficients dependent 
on temperature 

Neumann solution No analytical solutions are known 
Infinite Finite 
Exactly : pure materials and crystals 
Approximately : glassy materials and 

mixtures 

Exact solutions for glasses and mixtures 
Good numerical solutions for all 

substances (macroscopic description for 
engineering purposes) 

Continuous 
Mushy region with finite width unequal to 

zero 
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T, I T2 
Tn 

Fig. 1. Discontinuous (dotted line A) and continuous (solid 
line B) specific enthalpy functions. 

b this type of equation is known as a phase diffusion 
equation [8, 9] : 

‘2 
’ dY 

-=a 
at (8) 

Because of the square product of the spatial derivative 
this equation is nonlinear even when the coefficients 
considered are constant. It describes chemical reaction 
front propagations in diffusion-limited reaction 
diffusion systems. Another important analogy occurs 
with phenomena in fluid dynamics. Using the Cole- 
Hopf transformation 

v=-2b E . . 
8X 

Burger’s equation is obtained from relation (8) (see 
ref. [lo]) : 

dV 8% au 
-=a~----v~- 
at ax* ax (10) 

which is known to have a family of shock solutions. 
In Section 5 it will be shown that in PCM storage 
devices-analogous to the increasing inclination of 
fluid dynamical waves-an increase in the inclination 
of temperature distributions can be observed. In the 
special case considered here [equation (8) with con- 
stant coefficients] a linear relation between the shock 
front position and time can be derived. In the more 
general case of temperature-depefrdent coefficients, as 
in the description of PCMs with the continuous- 
properties model, other dependencies-as for example 
a square root function-an result (e.g. see Fig. 8). 

4. CONTINUOUS PROPERTIES OF PCMS 

Pure crystalline substances and eutectics show dis- 
continuous enthalpy as a function of temperature. The 
melting temperature has a sharply defined value T, 
(dotted curve A in Fig. 1). Because of a discontinuity 
the enthalpy is not a unique function of temperature. 

On the other hand the enthalpy of a mixture or a 
glassy substance increases, following a smooth curve 
from the perceived linear behaviour of the solid phase, 
with gradient cp,, towards the liquid phase, also with 
a linear dependence on the slope, c,,, (solid line B in 
Fig. 1). 

Materials with continuous properties as functions 
of temperature also show continuous behaviour in 
space. Therefore, between the liquid and the solid, a 
mushy region-with a width dependent on the physi- 
cal properties and the dynamics of the system-is 
observed. To describe the physical properties of a 
substance, in agreement with the Ginzburg-Landau 
theory of phase transitions, it would be appropriate to 
.apply polynomial fitting curves. The solid and liquid 
phases would then each be separated from the mushy 
region by a critical temperature. As will be seen, from 
a numerical point of view, it is useful to choose an 
appropriate analytic function. For example, in the 
present version of the model the following exponential 
description has been incorporated : 

67 = CP, *T+r/,: T< T,,, (11) 

*(T-T,,,-qy12: T> T,, (12) 

VI,2 = q.exp(-e). (13) 

Some quantities for these equations are shown in Fig. 
1. The equations are asymptotic functions, having 
respectively, the following forms : 

fromequations (11) and (13) (14) 

T++c~~h(T)+c,;T,~+(h~-h,) 

+cP2(T- T,,) from equations (12) and (13) (15) 

h, -h, 
T+T,$*~+c,;T,+~ 

= h(T,) = h,n fromequations (ll)-(13). (16) 

Requiring a function with a continuous derivative at 
T,,,, we obtain 

c -c P2 PI (17) 

An advantage of this approach is that it is possible to 
clearly define a melting zone : 

z = T, +z,. (18) 

It is clear that, with z --f 0, the discontinuous case A 
in Fig. 1 will be approached. A modified Stefan num- 
ber is now defined from this temperature difference 
and the difference in the specific heat capacities : 

Ste” = (cl% - 5,) * z 
h,-h, (19) 
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Fig. 2. Four nonlinear physical properties of a PCM. 

Assuming z to be constant, the following quadratic 
equation can be derived from the last three equations : 

+[(l+&)++(&J=O (20) 

which, together with equation (18), leads to two physi- 
cally relevant solutions : 

1 
zI =s 

( 
1 +Ste*pJ_ 

> 
‘7 

7’2 =& 
( 

Ste*-1+J_ 
> 

et. (21) 

In the given limits there are the following results : 

Ste*+O*z, ++z ~~-17 and 

Ste* + 00 + zi + 0 z2 + z. (22) 

The thermal conductivity has been described by an 
analogous exponential description, with cor- 
responding widths z, and z2 of the mushy region, vary- 
ing continuously between the constant thermal con- 
ductivities k, and k,. 

Figure 2 shows four nonlinear properties of a com- 
mercially available salt hydrate PCM, based on 
CaCl, * 6H20. The physical properties have been taken 
from ref. [l l] and the width r of the melting regime 
was chosen to be 2 K. They all are constant or linear 
in the solid domain on the left and in the liquid region 

at high temperatures. Between the two phases they 
vary smoothly from one linear regime to the other. 
Furthermore, the thermal diffusivity also shows con- 
stant values in the pure phases and decreases by up to 
two orders of magnitude towards the mean melting 
temperature T,,, in the mushy region. For all tem- 
peratures the density has been assumed constant, 
equal to the density of the liquid phase : 

p(T) = p2 = constant. (23) 

This makes the calculations considerably less difficult. 
Equation (23) is a first approximation for substances 
which solidify with small regularly distributed voids 
inside the solid. A further simplifying assumption is 
that these cavities do not affect the thermal con- 
ductivity noticeably. 

In Fig. 2 the quantities have been scaled in the 
following way : 

(24) 

Combining equations (1 I)-( 13), the corresponding 
description of the thermal conductivity, and formula 
(3) for the specific heat, and applying the results to 
equations (4) and (7), one obtains the coefficients a(T) 
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and b(T) of the nonlinear thermal heat equation 

(6). 

5. STRESS NUMBER OF THE THERMAL 
SYSTEM 

To outline some ideas as to how to quantify the 
nonlinearity of a thermal problem under consider- 
ation, we focus on the following special case : 

z * k 
Ak*AT 

>> 1. 

The following nonlinear diffusion equation is then 
obtained : 

Now, we expand the thermal diffusivity into a con- 
stant term which describes the usual linear diffusion 
and a nonlinear contribution that is responsible for 
steepening prqcesses, driven by curvature : 

ar 2 2 
- = a(T,J * 
at 

sfA~*%\T=n, 

a2T da 
edX2fdr *(T-T,,)*$+ (27) 

=c 

The expansion leads to the possibility of defining a 
stress number Sn for the thermal system : 

AT* = max 
(TI TEfV’)) 

{T-T,} 

Aa” = a(T,+Ar*)-cc(T,). (28) 

An approximation to the derivative in equation (28) 

is Am,,,1 z and, therefore, a dimensional analytic esti- 
mation of the stress number is 

sn = 
Arx,,, * AT* 

a,*z 

The number Sn is a measure of the nonlinearity of the 
thermal phenomena under consideration, comparable 
with the Reynolds number of fluid flow. If a tem- 
perature signal in a PCM occurs at low (or high) 
temperatures, equation (6) becomes identical to the 
linear heat conduction equation of the pure solid (or 
pure liquid) phase : 

Aa*=O*Sn=O+a,=a=constant 

dT d2T 
b=o*~=a,- 

at ax* 
iE {1,2}. (30) 

A high stress number occurs if [see estimation (29)] 

~*O=+SSn-tcO. (31) 

Fig. 3. A sinusoidal temperature signal in the nonlinear ther- 
mal diffusivity domain becomes distorted, because different 
diffusivities occur at different temperatures. Because of an 
unsteady derivative of the specific heat at the mean tem- 
perature T,,, (see Fig. 2) the thermal diffusivity, which con- 
tains the specific heat in its denominator, gives a kink at this 

temperature. 

Concerning the nonlinearity of a problem, the dis- 
continuous case is the worst kind. It is well known 
that in a linear case temperature distributions are at 
most damped and phase-shifted. On the other hand, 
when a signal is located in the vicinity of the melting 
temperature T, the temperature perturbation 
becomes distorted because different diffusivities occur 
at different temperatures. In Fig. 3 a sinusoidal per- 
turbation has differences in its diffusivity up to AX* 
[compare the values at the minimum (A) and the 
maximum (B)]. Looking at Fig. 3 it is possible to 
give physical explanations for each of the steepening 
processes that occur. The sign of the product of the 
difference in diffusivity and the curvature of the tem- 
perature profile is important, and is proportional to 
the second spatial derivative. For oscillatory tem- 
perature distributions at different mean temperatures 
(T) and for corresponding local minima and maxima, 
the signs are given in Table 2 (case 1 is shown in Fig. 
3). If the product Aa* * IC is positive, then the nonlinear 
contribution, represented by the second term on the 
right-hand side of equation (27), gives a positive con- 
tribution to the time derivative of the temperature. 
Therefore, the nonlinear perturbation increases in the 
positive time direction and a steepening process on 
the right-hand side (front) of the profile will occur 
(see encircled number one in Fig. 4). If the entire 
temperature distribution is taken into consideration, 
this phenomenon causes a slowing down of the 
diffusion process at the front ; but this also increases 
its inclination. From equation (27) we conclude that 
nonlinear diffusion can be regarded as the occurrence 
of the usual linear diffusion with the superposition of 
nonlinear forward or backward steepening. To illus- 
trate the results of Table 2, we have performed some 
numerical calculations, presented in Fig. 4. Numbers 



2922 P. W. EGOLF and H. MANZ 

Table. 2. Signs of the diffuivity difference and curvature of the temperature distribution determining 
the direction of increasing SteepneSS. 

Difference in 
C?Be diffusivity ACC* 

.-- 
I >o 
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Fig. 4. Forward and backward steepening of temperature 
functions with mean temperatures (T) above and beneath 

Fig. 5. Steepening in the melting region. A smaller width 

the mean melting temperature r, = 27°C. The encircled 
of the melting region leads to a more intense steepening of 

numbers indicate the four different cases presented in 
the temperature distribution. The mean temperature is 

(T) = 22°C. 
Table 2. 

l-4 correspond to the four different cases given in 
Table 2. 

The calculations were performed for a one-dimen- 
sional slab of 10 cm thickness. The temperature was 
calculated for a depth of 2.5 cm from a surface. The 
excitations had an amplitude of 2 K and the period 
was 10 000 s. They were applied with equal phases to 
the boundaries on each side of the slab. Because of 
the small excitation amplitudes and mean tem- 
peratures (r) quite close to the mean melting tem- 
perature T,n, we could also obtain steepening at the 
extremes of temperature oscillation more distant from 

TlIl. 
The intensity of a steepening process increases with 

decreasing width of the melting regime. This can 
clearly be seen in Fig. 5, where calculations are pre- 
sented for two different widths, 5 and 0.1 K. The 
excitation at the boundary is also shown (dotted line). 
In contrast to the examples in Fig. 4, the excitation 
amplitude has a higher value of 10 K. Therefore, the 
temperatures at the minima reach down into the pure 
solid phase at 19°C (z = 5 K) and 16°C (z = 0.1 K), 
respectively. At these temperatures usual linear 
diffusion without steepening occurs. That is the reason 
why the temperature distribution keeps its sinusoidal 
shape in the vicinity of the local minima. Figure 6 
shows a phase space representation of the same tem- 
perature oscillations. We note that all these solutions 

ACC**K 
Increasing steepness 

to the: 

<o 
10 
>o 
<o 

Back (left) 
Front (right) 
Front (right) 

Back (left) 

- ~=0.1K 

28 

g 2b 

14 i 
10 15 20 25 30 35 

Excitation (temperature at the boundary (“C)) 

Fig. 6. Phase portrait representation of the periodic steady- 
state solutions shown in Fig. 5. 

are steady periodic oscillations, occurring after a 
relaxation time of 19.4 h. 

6. PERFORMANCE OF THE MODEL 

In order to test the new model, we have chosen 
Neumann’s analytical solution, which describes dis- 
continuous front propagation. An infinite half plane 
is initially at a constant temperature T, above the 
melting temperature T,. At time t = 0 the boundary 
temperature is lowered to Tr below T,,,. For this case 
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Fig. 7. Temperature distributions for different widths of the 
melting region. The discontinuous phase boundary can be 
identified by finding a kink in the Neumann solution (z. = 0) : 

after 5 h freezing time it is located at 2.35 cm. 

the solution of the Stefan problem, discussed in Sec- 
tion 2 is [l 11 

‘1 X 
erf ~ 

T, - Tf =( > 2*Jclit 

T,--Tf erf (1) 
: 0 < x < s(t) (32) 

T, - T, 
T,-T, 

: s(t) < x (33) 

with the phase boundary located at 

s(t) = 2*1*fi. (34) 

A transcendental equation is obtained by substituting 
these solutions into the phase boundary condition of 
the Stefan problem [ 1 l] : 

Ste exp(-12) b’*y’ exp (-/Y’*/2’) 

J 71.1 *L erf (2) cl’2 erfc (8’ * 1) 1 = 1, 

(35) 

The following abbreviations have been introduced : 

Ste = 
cp, * G”m - Tr) 

hZ-hl 

(36) 

Solving equation (35) determines the parameter 1, 
which has to be known to plot the analytical solutions 
(32)-(34). In Fig. 7 numerical solutions-with differ- 
ent zs-are shown together with the Neumann solu- 
tion (z = 0). For a decreasing z the temperature curves 
show an increasing curvature at the position of the 
solidification front and approach the Neumann solu- 

OVI 
0 2 

&me (hy 
8 10 

Fig. 8. Solidification front position as a function or time. 

tion for z tending to zero. Figure 8 illustrates that- 
in this example-we could not find any significant 
deviations in the positions of the fronts, comparing 
cases with small and large mushy regions, for quite a 
large time interval of 10 h. 

All the results presented were obtained with an ordi- 
nary finite-difference scheme. It is astonishing how 
well the continuous-properties model applies even to 
melting zone widths of only small fractions of 1 K 
(e.g. l/l00 K). Therefore, we conclude that the model 
can also be used to numerically calculate melting and 
solidification of materials without mushy regions with 
high precision. 

For the finite-difference scheme the Courant-Fried- 
richs+Lewy stability criterion exists that is sufficient 
but not necessary [ 121. For nonlinear diffusivities this 
criterion has to be modified (see ref. [13]). It is seen 
that a nonconstant steep diffusivity function and the 
high dimensionality of the problem demand small time 
steps. 

7. CONCLUSIONS AND OUTLOOK 

We have presented a theory and some first cal- 
culations concerning a new model that initially has 
been developed to calculate melting and solidification 
of materials with mushy regions. The possibility to 
numerically solve problems with very thin mushy 
domains makes the model, for practical purposes, also 
apply correctly to substances with discontinuous 
phase boundaries. At present, we are studying how 
successfully it can be applied to PCMs, for example 
salt hydrates, which we intend to use for solar engin- 
eering applications. First investigations of the behav- 
iour of a two-dimensional store, with air acting as the 
heat transport fluid, show a good agreement between 
experimental results and solutions of numerical simu- 
lations. 
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